Papers
Topics
Authors
Recent
Search
2000 character limit reached

The moving frame method for iterated-integrals: orthogonal invariants

Published 10 Dec 2020 in math.DG and math.AG | (2012.05880v2)

Abstract: Geometric features, robust to noise, of curves in Euclidean space are of great interest for various applications such as machine learning and image analysis. We apply the Fels-Olver's moving frame method (for geometric features) paired with the log-signature transform (for robust features) to construct a set of integral invariants under rigid motions for curves in $\mathbb{R}d$ from the iterated-integral signature. In particular we show that one can algorithmically construct a set of invariants that characterize the equivalence class of the truncated iterated-integrals signature under orthogonal transformations which yields a characterization of a curve in $\mathbb{R}d$ under rigid motions (and tree-like extensions) and an explicit method to compare curves up to these transformations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.