Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Privacy in Trigger-Action Systems (2012.05749v3)

Published 10 Dec 2020 in cs.CR

Abstract: Trigger-action platforms (TAPs) allow users to connect independent web-based or IoT services to achieve useful automation. They provide a simple interface that helps end-users create trigger-compute-action rules that pass data between disparate Internet services. Unfortunately, TAPs introduce a large-scale security risk: if they are compromised, attackers will gain access to sensitive data for millions of users. To avoid this risk, we propose eTAP, a privacy-enhancing trigger-action platform that executes trigger-compute-action rules without accessing users' private data in plaintext or learning anything about the results of the computation. We use garbled circuits as a primitive, and leverage the unique structure of trigger-compute-action rules to make them practical. We formally state and prove the security guarantees of our protocols. We prototyped eTAP, which supports the most commonly used operations on popular commercial TAPs like IFTTT and Zapier. Specifically, it supports Boolean, arithmetic, and string operations on private trigger data and can run 100% of the top-500 rules of IFTTT users and 93.4% of all publicly-available rules on Zapier. Based on ten existing rules that exercise a wide variety of operations, we show that eTAP has a modest performance impact: on average rule execution latency increases by 70 ms (55%) and throughput reduces by 59%.

Citations (18)

Summary

We haven't generated a summary for this paper yet.