Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emergent Quantumness in Neural Networks (2012.05082v2)

Published 9 Dec 2020 in quant-ph, cond-mat.stat-mech, cs.LG, and hep-th

Abstract: It was recently shown that the Madelung equations, that is, a hydrodynamic form of the Schr\"odinger equation, can be derived from a canonical ensemble of neural networks where the quantum phase was identified with the free energy of hidden variables. We consider instead a grand canonical ensemble of neural networks, by allowing an exchange of neurons with an auxiliary subsystem, to show that the free energy must also be multivalued. By imposing the multivaluedness condition on the free energy we derive the Schr\"odinger equation with "Planck's constant" determined by the chemical potential of hidden variables. This shows that quantum mechanics provides a correct statistical description of the dynamics of the grand canonical ensemble of neural networks at the learning equilibrium. We also discuss implications of the results for machine learning, fundamental physics and, in a more speculative way, evolutionary biology.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com