Emergent Quantumness in Neural Networks
Abstract: It was recently shown that the Madelung equations, that is, a hydrodynamic form of the Schr\"odinger equation, can be derived from a canonical ensemble of neural networks where the quantum phase was identified with the free energy of hidden variables. We consider instead a grand canonical ensemble of neural networks, by allowing an exchange of neurons with an auxiliary subsystem, to show that the free energy must also be multivalued. By imposing the multivaluedness condition on the free energy we derive the Schr\"odinger equation with "Planck's constant" determined by the chemical potential of hidden variables. This shows that quantum mechanics provides a correct statistical description of the dynamics of the grand canonical ensemble of neural networks at the learning equilibrium. We also discuss implications of the results for machine learning, fundamental physics and, in a more speculative way, evolutionary biology.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.