Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum LDPC Codes with Almost Linear Minimum Distance (2012.04068v2)

Published 7 Dec 2020 in cs.IT, math.IT, and quant-ph

Abstract: We give a construction of quantum LDPC codes of dimension $\Theta(\log N)$ and distance $\Theta(N/\log N)$ as the code length $N\to\infty$. Using a product of chain complexes this construction also provides a family of quantum LDPC codes of distance $\Omega(N{1-\alpha/2}/\log N)$ and dimension $\Omega(N\alpha \log N)$, where $0 \le \alpha < 1$. We also introduce and study a new operation called lifted product, which naturally generalizes the product operations for quantum codes and chain complexes. Moreover, as a simple byproduct of our results on quantum codes, we obtain a new result on classical codes. We show that for any fixed $R < 1$ there exists an asymptotically good family of classical quasi-cyclic LDPC codes of rate at least $R$ with, in some sense, optimal circulant size $\Omega(N/\log N)$ as the code length $N\to\infty$.

Citations (129)

Summary

We haven't generated a summary for this paper yet.