Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disentangling a Deep Learned Volume Formula (2012.03955v2)

Published 7 Dec 2020 in hep-th, cs.LG, and math.GT

Abstract: We present a simple phenomenological formula which approximates the hyperbolic volume of a knot using only a single evaluation of its Jones polynomial at a root of unity. The average error is just $2.86$% on the first $1.7$ million knots, which represents a large improvement over previous formulas of this kind. To find the approximation formula, we use layer-wise relevance propagation to reverse engineer a black box neural network which achieves a similar average error for the same approximation task when trained on $10$% of the total dataset. The particular roots of unity which appear in our analysis cannot be written as $e{2\pi i / (k+2)}$ with integer $k$; therefore, the relevant Jones polynomial evaluations are not given by unknot-normalized expectation values of Wilson loop operators in conventional $SU(2)$ Chern$\unicode{x2013}$Simons theory with level $k$. Instead, they correspond to an analytic continuation of such expectation values to fractional level. We briefly review the continuation procedure and comment on the presence of certain Lefschetz thimbles, to which our approximation formula is sensitive, in the analytically continued Chern$\unicode{x2013}$Simons integration cycle.

Citations (18)

Summary

We haven't generated a summary for this paper yet.