Papers
Topics
Authors
Recent
Search
2000 character limit reached

Breaking the Barrier of 2 for the Competitiveness of Longest Queue Drop

Published 7 Dec 2020 in cs.DS | (2012.03906v2)

Abstract: We consider the problem of managing the buffer of a shared-memory switch that transmits packets of unit value. A shared-memory switch consists of an input port, a number of output ports, and a buffer with a specific capacity. In each time step, an arbitrary number of packets arrive at the input port, each packet designated for one output port. Each packet is added to the queue of the respective output port. If the total number of packets exceeds the capacity of the buffer, some packets have to be irrevocably evicted. At the end of each time step, each output port transmits a packet in its queue and the goal is to maximize the number of transmitted packets. The Longest Queue Drop (LQD) online algorithm accepts any arriving packet to the buffer. However, if this results in the buffer exceeding its memory capacity, then LQD drops a packet from whichever queue is currently the longest, breaking ties arbitrarily. The LQD algorithm was first introduced in 1991, and is known to be $2$-competitive since 2001. Although LQD remains the best known online algorithm for the problem and is of practical interest, determining its true competitiveness is a long-standing open problem. We show that LQD is 1.6918-competitive, establishing the first $(2-\varepsilon)$ upper bound for the competitive ratio of LQD, for a constant $\varepsilon>0$.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.