Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Block majorization-minimization with diminishing radius for constrained nonsmooth nonconvex optimization (2012.03503v6)

Published 7 Dec 2020 in math.OC and stat.ML

Abstract: Block majorization-minimization (BMM) is a simple iterative algorithm for constrained nonconvex optimization that sequentially minimizes majorizing surrogates of the objective function in each block while the others are held fixed. BMM entails a large class of optimization algorithms such as block coordinate descent and its proximal-point variant, expectation-minimization, and block projected gradient descent. We first establish that for general constrained nonsmooth nonconvex optimization, BMM with $\rho$-strongly convex and $L_g$-smooth surrogates can produce an $\epsilon$-approximate first-order optimal point within $\widetilde{O}((1+L_g+\rho{-1})\epsilon{-2})$ iterations and asymptotically converges to the set of first-order optimal points. Next, we show that BMM combined with trust-region methods with diminishing radius has an improved complexity of $\widetilde{O}((1+L_g) \epsilon{-2})$, independent of the inverse strong convexity parameter $\rho{-1}$, allowing improved theoretical and practical performance with `flat' surrogates. Our results hold robustly even when the convex sub-problems are solved as long as the optimality gaps are summable. Central to our analysis is a novel continuous first-order optimality measure, by which we bound the worst-case sub-optimality in each iteration by the first-order improvement the algorithm makes. We apply our general framework to obtain new results on various algorithms such as the celebrated multiplicative update algorithm for nonnegative matrix factorization by Lee and Seung, regularized nonnegative tensor decomposition, and the classical block projected gradient descent algorithm. Lastly, we numerically demonstrate that the additional use of diminishing radius can improve the convergence rate of BMM in many instances.

Citations (9)

Summary

We haven't generated a summary for this paper yet.