Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Mechanical System Inspired Microscopic Traffic Model: Modeling, Analysis, and Validation (2012.02948v1)

Published 5 Dec 2020 in eess.SY and cs.SY

Abstract: In this paper, we develop a mechanical system inspired microscopic traffic model to characterize the longitudinal interaction dynamics among a chain of vehicles. In particular, we extend our prior work on mass-spring-damper-clutch based car-following model between two vehicles to multi-vehicle scenario. This model can naturally capture the driver's tendency to maintain the same speed as the vehicle ahead while keeping a (speed-dependent) desired spacing. It is also capable of characterizing the impact of the following vehicle on the preceding vehicle, which is generally neglected in existing models. A new string stability criterion is defined for the considered multi-vehicle dynamics, and stability analysis is performed on the system parameters and time delays. An efficient online parameter identification algorithm, sequential recursive least squares with inverse QR decomposition (SRLS-IQR), is developed to estimate the driving-related model parameters. These real-time estimated parameters can be employed in advanced longitudinal control systems to enable accurate prediction of vehicle trajectories for improved safety and fuel efficiency. The proposed model and the parameter identification algorithm are validated on NGSIM, a naturalistic driving dataset, as well as our own connected vehicle driving data. Promising performance is demonstrated.

Citations (12)

Summary

We haven't generated a summary for this paper yet.