Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A latent variable approach to account for correlated inputs in global sensitivity analysis with cases from pharmacological systems modelling (2012.02500v1)

Published 4 Dec 2020 in stat.AP and q-bio.QM

Abstract: In pharmaceutical research and development decision-making related to drug candidate selection, efficacy and safety is commonly supported through modelling and simulation (M&S). Among others, physiologically-based pharmacokinetic models are used to describe drug absorption, distribution and metabolism in human. Global sensitivity analysis (GSA) is gaining interest in the pharmacological M&S community as an important element for quality assessment of model-based inference. Physiological models often present inter-correlated parameters. The inclusion of correlated factors in GSA and the sensitivity indices interpretation has proven an issue for these models. Here we devise and evaluate a latent variable approach for dealing with correlated factors in GSA. This approach describes the correlation between two model inputs through the causal relationship of three independent factors: the latent variable and the unique variances of the two correlated parameters. Then, GSA is performed with the classical variance-based method. We applied the latent variable approach to a set of algebraic models and a case from physiologically-based pharmacokinetics. Then, we compared our approach to Sobol's GSA assuming no correlations, Sobol's GSA with groups and the Kucherenko approach. The relative ease of implementation and interpretation makes this a simple approach for carrying out GSA for models with correlated input factors.

Summary

We haven't generated a summary for this paper yet.