A Probabilistic Guidance Approach to Swarm-to-Swarm Engagement Problem (2012.01928v1)
Abstract: This paper introduces a probabilistic guidance approach for the swarm-to-swarm engagement problem. The idea is based on driving the controlled swarm towards an adversary swarm, where the adversary swarm aims to converge to a stationary distribution that corresponds to a defended base location. The probabilistic approach is based on designing a Markov chain for the distribution of the swarm to converge a stationary distribution. This approach is decentralized, so each agent can propagate its position independently of other agents. Our main contribution is the formulation of the swarm-to-swarm engagement as an optimization problem where the population of each swarm decays with each engagement and determining a desired distribution for the controlled swarm to converge time-varying distribution and eliminate agents of the adversary swarm until adversary swarm enters the defended base location. We demonstrate the validity of proposed approach on several swarm engagement scenarios.