Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sample Complexity of Policy Gradient Finding Second-Order Stationary Points (2012.01491v1)

Published 2 Dec 2020 in cs.LG

Abstract: The goal of policy-based reinforcement learning (RL) is to search the maximal point of its objective. However, due to the inherent non-concavity of its objective, convergence to a first-order stationary point (FOSP) can not guarantee the policy gradient methods finding a maximal point. A FOSP can be a minimal or even a saddle point, which is undesirable for RL. Fortunately, if all the saddle points are \emph{strict}, all the second-order stationary points (SOSP) are exactly equivalent to local maxima. Instead of FOSP, we consider SOSP as the convergence criteria to character the sample complexity of policy gradient. Our result shows that policy gradient converges to an $(\epsilon,\sqrt{\epsilon\chi})$-SOSP with probability at least $1-\widetilde{\mathcal{O}}(\delta)$ after the total cost of $\mathcal{O}\left(\dfrac{\epsilon{-\frac{9}{2}}}{(1-\gamma)\sqrt\chi}\log\dfrac{1}{\delta}\right)$, where $\gamma\in(0,1)$. Our result improves the state-of-the-art result significantly where it requires $\mathcal{O}\left(\dfrac{\epsilon{-9}\chi{\frac{3}{2}}}{\delta}\log\dfrac{1}{\epsilon\chi}\right)$. Our analysis is based on the key idea that decomposes the parameter space $\mathbb{R}p$ into three non-intersected regions: non-stationary point, saddle point, and local optimal region, then making a local improvement of the objective of RL in each region. This technique can be potentially generalized to extensive policy gradient methods.

Citations (21)

Summary

We haven't generated a summary for this paper yet.