Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extracting COVID-19 Diagnoses and Symptoms From Clinical Text: A New Annotated Corpus and Neural Event Extraction Framework (2012.00974v2)

Published 2 Dec 2020 in cs.CL and cs.LG

Abstract: Coronavirus disease 2019 (COVID-19) is a global pandemic. Although much has been learned about the novel coronavirus since its emergence, there are many open questions related to tracking its spread, describing symptomology, predicting the severity of infection, and forecasting healthcare utilization. Free-text clinical notes contain critical information for resolving these questions. Data-driven, automatic information extraction models are needed to use this text-encoded information in large-scale studies. This work presents a new clinical corpus, referred to as the COVID-19 Annotated Clinical Text (CACT) Corpus, which comprises 1,472 notes with detailed annotations characterizing COVID-19 diagnoses, testing, and clinical presentation. We introduce a span-based event extraction model that jointly extracts all annotated phenomena, achieving high performance in identifying COVID-19 and symptom events with associated assertion values (0.83-0.97 F1 for events and 0.73-0.79 F1 for assertions). In a secondary use application, we explored the prediction of COVID-19 test results using structured patient data (e.g. vital signs and laboratory results) and automatically extracted symptom information. The automatically extracted symptoms improve prediction performance, beyond structured data alone.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Kevin Lybarger (19 papers)
  2. Mari Ostendorf (57 papers)
  3. Matthew Thompson (3 papers)
  4. Meliha Yetisgen (31 papers)
Citations (42)