Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Equivariant Energy Flow Networks for Jet Tagging (2012.00964v2)

Published 2 Dec 2020 in hep-ph

Abstract: Jet tagging techniques that make use of deep learning show great potential for improving physics analyses at colliders. One such method is the Energy Flow Network (EFN) - a recently introduced neural network architecture that represents jets as permutation-invariant sets of particle momenta while maintaining infrared and collinear safety. We develop a variant of the Energy Flow Network architecture based on the Deep Sets formalism, incorporating permutation-equivariant layers. We derive conditions under which infrared and collinear safety can be maintained, and study the performance of these networks on the canonical example of W-boson tagging. We find that equivariant Energy Flow Networks have similar performance to Particle Flow Networks, which are superior to standard EFNs. However, equivariant Particle Flow Networks suffer from convergence and overfitting issues. Finally, we study how equivariant networks sculpt the jet mass and provide some initial results on decorrelation using planing.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.