Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
107 tokens/sec
Gemini 2.5 Pro Premium
58 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
84 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Iterative Error Decimation for Syndrome-Based Neural Network Decoders (2012.00089v4)

Published 30 Nov 2020 in cs.IT and math.IT

Abstract: In this letter, we introduce a new syndrome-based decoder where a deep neural network (DNN) estimates the error pattern from the reliability and syndrome of the received vector. The proposed algorithm works by iteratively selecting the most confident positions to be the error bits of the error pattern, updating the vector received when a new position of the error pattern is selected. Simulation results for the (63,45) and (63,36) BCH codes show that the proposed approach outperforms existing neural network decoders. In addition, the new decoder is flexible in that it can be applied on top of any existing syndrome-based DNN decoder without retraining.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.