Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithms for Influence Maximization in Socio-Physical Networks (2011.14902v1)

Published 30 Nov 2020 in cs.SI

Abstract: Given a directed graph (representing a social network), the influence maximization problem is to find k nodes which, when influenced (or activated), would maximize the number of remaining nodes that get activated. In this paper, we consider a more general version of the problem that includes an additional set of nodes, termed as physical nodes, such that a node in the social network is covered by one or more physical nodes. A physical node exists in one of two states at any time, opened or closed, and there is a constraint on the maximum number of physical nodes that can be opened. In this setting, an inactive node in the social network becomes active if it has enough active neighbors in the social network and if it is covered by at least one of the opened physical nodes. This problem arises in disaster recovery, where a displaced social group decides to return after a disaster only after enough groups in its social network return and some infrastructure components in its neighborhood are repaired. The general problem is NP-hard to approximate within any constant factor and thus we characterize optimal and approximation algorithms for special instances of the problem.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hemant Gehlot (7 papers)
  2. Shreyas Sundaram (87 papers)
  3. Satish V. Ukkusuri (47 papers)

Summary

We haven't generated a summary for this paper yet.