Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction (2011.14744v1)

Published 30 Nov 2020 in cs.CV

Abstract: Semantic scene understanding from point clouds is particularly challenging as the points reflect only a sparse set of the underlying 3D geometry. Previous works often convert point cloud into regular grids (e.g. voxels or bird-eye view images), and resort to grid-based convolutions for scene understanding. In this work, we introduce RfD-Net that jointly detects and reconstructs dense object surfaces directly from raw point clouds. Instead of representing scenes with regular grids, our method leverages the sparsity of point cloud data and focuses on predicting shapes that are recognized with high objectness. With this design, we decouple the instance reconstruction into global object localization and local shape prediction. It not only eases the difficulty of learning 2-D manifold surfaces from sparse 3D space, the point clouds in each object proposal convey shape details that support implicit function learning to reconstruct any high-resolution surfaces. Our experiments indicate that instance detection and reconstruction present complementary effects, where the shape prediction head shows consistent effects on improving object detection with modern 3D proposal network backbones. The qualitative and quantitative evaluations further demonstrate that our approach consistently outperforms the state-of-the-arts and improves over 11 of mesh IoU in object reconstruction.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com