Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A characterization of $X$ for which spaces $C_p(X)$ are distinguished and its applications (2011.14299v1)

Published 29 Nov 2020 in math.GN and math.FA

Abstract: We prove that the locally convex space $C_{p}(X)$ of continuous real-valued functions on a Tychonoff space $X$ equipped with the topology of pointwise convergence is distinguished if and only if $X$ is a $\Delta$-space in the sense of \cite {Knight}. As an application of this characterization theorem we obtain the following results: 1) If $X$ is a \v{C}ech-complete (in particular, compact) space such that $C_p(X)$ is distinguished, then $X$ is scattered. 2) For every separable compact space of the Isbell--Mr\'owka type $X$, the space $C_p(X)$ is distinguished. 3) If $X$ is the compact space of ordinals $[0,\omega_1]$, then $C_p(X)$ is not distinguished. We observe that the existence of an uncountable separable metrizable space $X$ such that $C_p(X)$ is distinguished, is independent of ZFC. We explore also the question to which extent the class of $\Delta$-spaces is invariant under basic topological operations.

Summary

We haven't generated a summary for this paper yet.