Random quantum circuits anti-concentrate in log depth
Abstract: We consider quantum circuits consisting of randomly chosen two-local gates and study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated, roughly meaning that the probability mass is not too concentrated on a small number of measurement outcomes. Understanding the conditions for anti-concentration is important for determining which quantum circuits are difficult to simulate classically, as anti-concentration has been in some cases an ingredient of mathematical arguments that simulation is hard and in other cases a necessary condition for easy simulation. Our definition of anti-concentration is that the expected collision probability, that is, the probability that two independently drawn outcomes will agree, is only a constant factor larger than if the distribution were uniform. We show that when the 2-local gates are each drawn from the Haar measure (or any two-design), at least $\Omega(n \log(n))$ gates (and thus $\Omega(\log(n))$ circuit depth) are needed for this condition to be met on an $n$ qudit circuit. In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n \log(n))$ gates are also sufficient, and we precisely compute the optimal constant prefactor for the $n \log(n)$. The technique we employ relies upon a mapping from the expected collision probability to the partition function of an Ising-like classical statistical mechanical model, which we manage to bound using stochastic and combinatorial techniques.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.