Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Direct Transcription for Dynamic Optimization: A Tutorial with a Case Study on Dual-Patient Ventilation During the COVID-19 Pandemic (2011.11570v1)

Published 23 Nov 2020 in math.OC, cs.SY, and eess.SY

Abstract: A variety of optimal control, estimation, system identification and design problems can be formulated as functional optimization problems with differential equality and inequality constraints. Since these problems are infinite-dimensional and often do not have a known analytical solution, one has to resort to numerical methods to compute an approximate solution. This paper uses a unifying notation to outline some of the techniques used in the transcription step of simultaneous direct methods (which discretize-then-optimize) for solving continuous-time dynamic optimization problems. We focus on collocation, integrated residual and Runge-Kutta schemes. These transcription methods are then applied to a simulation case study to answer a question that arose during the COVID-19 pandemic, namely: If there are not enough ventilators, is it possible to ventilate more than one patient on a single ventilator? The results suggest that it is possible, in principle, to estimate individual patient parameters sufficiently accurately, using a relatively small number of flow rate measurements, without needing to disconnect a patient from the system or needing more than one flow rate sensor. We also show that it is possible to ensure that two different patients can indeed receive their desired tidal volume, by modifying the resistance experienced by the air flow to each patient and controlling the ventilator pressure.

Citations (2)

Summary

We haven't generated a summary for this paper yet.