Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithmic random duality theory -- large scale CLuP (2011.11516v1)

Published 23 Nov 2020 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Based on our \bl{\textbf{Random Duality Theory (RDT)}}, in a sequence of our papers \cite{Stojnicclupint19,Stojnicclupcmpl19,Stojnicclupplt19}, we introduced a powerful algorithmic mechanism (called \bl{\textbf{CLuP}}) that can be utilized to solve \textbf{\emph{exactly}} NP hard optimization problems in polynomial time. Here we move things further and utilize another of remarkable RDT features that we established in a long line of work in \cite{StojnicCSetam09,StojnicCSetamBlock09,StojnicISIT2010binary,StojnicDiscPercp13,StojnicUpper10,StojnicGenLasso10,StojnicGenSocp10,StojnicPrDepSocp10,StojnicRegRndDlt10,Stojnicbinary16fin,Stojnicbinary16asym}. Namely, besides being stunningly precise in characterizing the performance of various random structures and optimization problems, RDT simultaneously also provided an almost unparallel way for creating computationally efficient optimization algorithms that achieve such performance. One of the keys to our success was our ability to transform the initial \textbf{\emph{constrained}} optimization into an \textbf{\emph{unconstrained}} one and in doing so greatly simplify things both conceptually and computationally. That ultimately enabled us to solve a large set of classical optimization problems on a very large scale level. Here, we demonstrate how such a thinking can be applied to CLuP as well and eventually utilized to solve pretty much any problem that the basic CLuP from \cite{Stojnicclupint19,Stojnicclupcmpl19,Stojnicclupplt19} can solve.

Citations (2)

Summary

We haven't generated a summary for this paper yet.