Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven System Level Synthesis (2011.10674v3)

Published 20 Nov 2020 in math.OC, cs.LG, cs.SY, and eess.SY

Abstract: We establish data-driven versions of the System Level Synthesis (SLS) parameterization of achievable closed-loop system responses for a linear-time-invariant system over a finite-horizon. Inspired by recent work in data-driven control that leverages tools from behavioral theory, we show that optimization problems over system-responses can be posed using only libraries of past system trajectories, without explicitly identifying a system model. We first consider the idealized setting of noise free trajectories, and show an exact equivalence between traditional and data-driven SLS. We then show that in the case of a system driven by process noise, tools from robust SLS can be used to characterize the effects of noise on closed-loop performance, and further draw on tools from matrix concentration to show that a simple trajectory averaging technique can be used to mitigate these effects. We end with numerical experiments showing the soundness of our methods.

Citations (37)

Summary

We haven't generated a summary for this paper yet.