Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient space-time reduced order model for linear dynamical systems in Python using less than 120 lines of code (2011.10648v1)

Published 20 Nov 2020 in math.NA, cs.MS, and cs.NA

Abstract: A classical reduced order model (ROM) for dynamical problems typically involves only the spatial reduction of a given problem. Recently, a novel space-time ROM for linear dynamical problems has been developed, which further reduces the problem size by introducing a temporal reduction in addition to a spatial reduction without much loss in accuracy. The authors show an order of a thousand speed-up with a relative error of less than 0.00001 for a large-scale Boltzmann transport problem. In this work, we present for the first time the derivation of the space-time Petrov-Galerkin projection for linear dynamical systems and its corresponding block structures. Utilizing these block structures, we demonstrate the ease of construction of the space-time ROM method with two model problems: 2D diffusion and 2D convection diffusion, with and without a linear source term. For each problem, we demonstrate the entire process of generating the full order model (FOM) data, constructing the space-time ROM, and predicting the reduced-order solutions, all in less than 120 lines of Python code. We compare our Petrov-Galerkin method with the traditional Galerkin method and show that the space-time ROMs can achieve O(100) speed-ups with O(0.001) to O(0.0001) relative errors for these problems. Finally, we present an error analysis for the space-time Petrov-Galerkin projection and derive an error bound, which shows an improvement compared to traditional spatial Galerkin ROM methods.

Citations (35)

Summary

We haven't generated a summary for this paper yet.