Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pseudoinverse-free randomized block iterative algorithms for consistent and inconsistent linear systems (2011.10353v2)

Published 20 Nov 2020 in math.NA and cs.NA

Abstract: Randomized iterative algorithms have attracted much attention in recent years because they can approximately solve large-scale linear systems of equations without accessing the entire coefficient matrix. In this paper, we propose two novel pseudoinverse-free randomized block iterative algorithms for solving consistent and inconsistent linear systems. The proposed algorithms require two user-defined random matrices: one for row sampling and the other for column sampling. We can recover the well-known doubly stochastic Gauss--Seidel, randomized Kaczmarz, randomized coordinate descent, and randomized extended Kaczmarz algorithms by choosing appropriate random matrices used in our algorithms. Because our algorithms allow for a much wider selection of these two random matrices, a number of new specific algorithms can be obtained. We prove the linear convergence in the mean square sense of our algorithms. Numerical experiments for linear systems with synthetic and real-world coefficient matrices demonstrate the efficiency of some special cases of our algorithms.

Citations (5)

Summary

We haven't generated a summary for this paper yet.