Papers
Topics
Authors
Recent
2000 character limit reached

Binary Discrete Fourier Transform and its Inversion

Published 19 Nov 2020 in math.NA and cs.NA | (2011.10130v2)

Abstract: A binary vector of length $N$ has elements that are either 0 or 1. We investigate the question of whether and how a binary vector of known length can be reconstructed from a limited set of its discrete Fourier transform (DFT) coefficients. A priori information that the vector is binary provides a powerful constraint. We prove that a binary vector is uniquely defined by its two complex DFT coefficients (zeroth, which gives the popcount, and first) if $N$ is prime. If $N$ has two prime factors, additional DFT coefficients must be included in the data set to guarantee uniqueness, and we find the number of required coefficients theoretically. One may need to know even more DFT coefficients to guarantee stability of inversion. However, our results indicate that stable inversion can be obtained when the number of known coefficients is about $1/3$ of the total. This entails the effect of super-resolution (the resolution limit is improved by the factor of $\sim 3$).

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.