Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Regular Expressions for Interpretable Medical Text Classification Using a Pool-based Simulated Annealing and Word-vector Models (2011.09351v1)

Published 16 Nov 2020 in cs.CL and cs.AI

Abstract: In this paper, we propose a rule-based engine composed of high quality and interpretable regular expressions for medical text classification. The regular expressions are auto generated by a constructive heuristic method and optimized using a Pool-based Simulated Annealing (PSA) approach. Although existing Deep Neural Network (DNN) methods present high quality performance in most NLP applications, the solutions are regarded as uninterpretable black boxes to humans. Therefore, rule-based methods are often introduced when interpretable solutions are needed, especially in the medical field. However, the construction of regular expressions can be extremely labor-intensive for large data sets. This research aims to reduce the manual efforts while maintaining high-quality solutions

Citations (1)

Summary

We haven't generated a summary for this paper yet.