Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
46 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
95 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
461 tokens/sec
Kimi K2 via Groq Premium
212 tokens/sec
2000 character limit reached

Initial Data and Eccentricity Reduction Toolkit for Binary Black Hole Numerical Relativity Waveforms (2011.08878v1)

Published 17 Nov 2020 in gr-qc

Abstract: The production of numerical relativity waveforms that describe quasicircular binary black hole mergers requires high-quality initial data, and an algorithm to iteratively reduce residual eccentricity. To date, these tools remain closed source, or in commercial software that prevents their use in high performance computing platforms. To address these limitations, and to ensure that the broader numerical relativity community has access to these tools, herein we provide all the required elements to produce high-quality numerical relativity simulations in supercomputer platforms, namely: open source parameter files to numerical simulate spinning black hole binaries with asymmetric mass-ratios; open source $\texttt{Python}$ tools to produce high-quality initial data for numerical relativity simulations of spinning black hole binaries on quasi-circular orbits; open source $\texttt{Python}$ tools for eccentricity reduction, both as stand-alone software and deployed in the $\texttt{Einstein Toolkit}$'s software infrastructure. This open source toolkit fills in a critical void in the literature at a time when numerical relativity has an ever increasing role in the study and interpretation of gravitational wave sources. As part of our community building efforts, and to streamline and accelerate the use of these resources, we provide tutorials that describe, step by step, how to obtain and use these open source numerical relativity tools.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube