Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing voice conversion network with cycle consistency loss of speaker identity (2011.08548v1)

Published 17 Nov 2020 in cs.SD and eess.AS

Abstract: We propose a novel training scheme to optimize voice conversion network with a speaker identity loss function. The training scheme not only minimizes frame-level spectral loss, but also speaker identity loss. We introduce a cycle consistency loss that constrains the converted speech to maintain the same speaker identity as reference speech at utterance level. While the proposed training scheme is applicable to any voice conversion networks, we formulate the study under the average model voice conversion framework in this paper. Experiments conducted on CMU-ARCTIC and CSTR-VCTK corpus confirm that the proposed method outperforms baseline methods in terms of speaker similarity.

Citations (17)

Summary

We haven't generated a summary for this paper yet.