Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Benchmarking Domain Randomisation for Visual Sim-to-Real Transfer (2011.07112v3)

Published 13 Nov 2020 in cs.RO and cs.CV

Abstract: Domain randomisation is a very popular method for visual sim-to-real transfer in robotics, due to its simplicity and ability to achieve transfer without any real-world images at all. Nonetheless, a number of design choices must be made to achieve optimal transfer. In this paper, we perform a comprehensive benchmarking study on these different choices, with two key experiments evaluated on a real-world object pose estimation task. First, we study the rendering quality, and find that a small number of high-quality images is superior to a large number of low-quality images. Second, we study the type of randomisation, and find that both distractors and textures are important for generalisation to novel environments.

Citations (20)

Summary

We haven't generated a summary for this paper yet.