Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LEAN: graph-based pruning for convolutional neural networks by extracting longest chains (2011.06923v3)

Published 13 Nov 2020 in cs.LG, cs.CV, and cs.NE

Abstract: Neural network pruning techniques can substantially reduce the computational cost of applying convolutional neural networks (CNNs). Common pruning methods determine which convolutional filters to remove by ranking the filters individually, i.e., without taking into account their interdependence. In this paper, we advocate the viewpoint that pruning should consider the interdependence between series of consecutive operators. We propose the LongEst-chAiN (LEAN) method that prunes CNNs by using graph-based algorithms to select relevant chains of convolutions. A CNN is interpreted as a graph, with the operator norm of each operator as distance metric for the edges. LEAN pruning iteratively extracts the highest value path from the graph to keep. In our experiments, we test LEAN pruning on several image-to-image tasks, including the well-known CamVid dataset, and a real-world X-ray CT dataset. Results indicate that LEAN pruning can result in networks with similar accuracy, while using 1.7-12x fewer convolutional filters than existing approaches.

Citations (4)

Summary

We haven't generated a summary for this paper yet.