Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-supervised reinforcement learning for speaker localisation with the iCub humanoid robot (2011.06544v1)

Published 12 Nov 2020 in cs.RO and cs.AI

Abstract: In the future robots will interact more and more with humans and will have to communicate naturally and efficiently. Automatic speech recognition systems (ASR) will play an important role in creating natural interactions and making robots better companions. Humans excel in speech recognition in noisy environments and are able to filter out noise. Looking at a person's face is one of the mechanisms that humans rely on when it comes to filtering speech in such noisy environments. Having a robot that can look toward a speaker could benefit ASR performance in challenging environments. To this aims, we propose a self-supervised reinforcement learning-based framework inspired by the early development of humans to allow the robot to autonomously create a dataset that is later used to learn to localize speakers with a deep learning network.

Citations (1)

Summary

We haven't generated a summary for this paper yet.