Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sample-driven optimal stopping: From the secretary problem to the i.i.d. prophet inequality (2011.06516v2)

Published 12 Nov 2020 in cs.GT and cs.DS

Abstract: We take a unifying approach to single selection optimal stopping problems with random arrival order and independent sampling of items. In the problem we consider, a decision maker (DM) initially gets to sample each of $N$ items independently with probability $p$, and can observe the relative rankings of these sampled items. Then, the DM faces the remaining items in an online fashion, observing the relative rankings of all revealed items. While scanning the sequence the DM makes irrevocable stop/continue decisions and her reward for stopping the sequence facing the item with rank $i$ is $Y_i$. The goal of the DM is to maximize her reward. We start by studying the case in which the values $Y_i$ are known to the DM, and then move to the case in which these values are adversarial. For the former case, we write the natural linear program that captures the performance of an algorithm, and take its continuous limit. We prove a structural result about this continuous limit, which allows us to reduce the problem to a relatively simple real optimization problem. We establish that the optimal algorithm is given by a sequence of thresholds $t_1\le t_2\le\cdots$ such that the DM should stop if seeing an item with current ranking $i$ after time $t_i$. Additionally we are able to recover several classic results in the area such as those for secretary problem and the minimum ranking problem. For the adversarial case, we obtain a similar linear program with an additional stochastic dominance constraint. Using the same machinery we are able to pin down the optimal competitive ratios for all values of $p$. Notably, we prove that as $p$ approaches 1, our guarantee converges linearly to 0.745, matching that of the i.i.d.~prophet inequality. Also interesting is the case $p=1/2$, where our bound evaluates to $0.671$, which improves upon the state of the art.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. José Correa (40 papers)
  2. Andrés Cristi (35 papers)
  3. Boris Epstein (4 papers)
  4. José Soto (5 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.