Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low PAPR waveform design for OFDM SYSTEM based on Convolutional Auto-Encoder (2011.06349v1)

Published 12 Nov 2020 in eess.SY, cs.LG, and cs.SY

Abstract: This paper introduces the architecture of a convolutional autoencoder (CAE) for the task of peak-to-average power ratio (PAPR) reduction and waveform design, for orthogonal frequency division multiplexing (OFDM) systems. The proposed architecture integrates a PAPR reduction block and a non-linear high power amplifier (HPA) model. We apply gradual loss learning for multi-objective optimization. We analyze the models performance by examining the bit error rate (BER), the PAPR and the spectral response, and comparing them with common PAPR reduction algorithms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.