Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremal Eigenvalues Of The Conformal Laplacian Under Sire-Xu Normalization (2011.06018v1)

Published 11 Nov 2020 in math.DG

Abstract: Let $(Mn,g)$ be a closed Riemannian manifold of dimension $n\ge 3$. We study the variational properties of the $k$-th eigenvalue functional $\tilde g\in[g] \mapsto \lambda_k(L_{\tilde g})$ under a non-volume normalization proposed by Sire-Xu. We discuss necessary conditions for the existence of extremal eigenvalues under such normalization. Also, we discuss the general existence problem when $k=1$.

Summary

We haven't generated a summary for this paper yet.