Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hochschild cohomology of Fermat type polynomials with non-abelian symmetries (2011.05937v2)

Published 11 Nov 2020 in math.AG

Abstract: For a polynomial $f = x_1n + \dots + x_Nn$ let $G_f$ be the non--abelian maximal group of symmetries of $f$. This is a group generated by all $g \in \mathrm{GL}(N,\mathbb{C})$, rescaling and permuting the variables, so that $f(\mathbf{x}) = f(g \cdot \mathbf{x})$. For any $G \subseteq G_f$ we compute explicitly Hochschild cohomology of the category of $G$--equivarint matrix factorizations of $f$. We introduce the pairing on it showing that it is a Frobenius algebra.

Summary

We haven't generated a summary for this paper yet.