Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Bayes Filter Models for Tactile Localization (2011.05559v1)

Published 11 Nov 2020 in cs.RO

Abstract: Localizing and tracking the pose of robotic grippers are necessary skills for manipulation tasks. However, the manipulators with imprecise kinematic models (e.g. low-cost arms) or manipulators with unknown world coordinates (e.g. poor camera-arm calibration) cannot locate the gripper with respect to the world. In these circumstances, we can leverage tactile feedback between the gripper and the environment. In this paper, we present learnable Bayes filter models that can localize robotic grippers using tactile feedback. We propose a novel observation model that conditions the tactile feedback on visual maps of the environment along with a motion model to recursively estimate the gripper's location. Our models are trained in simulation with self-supervision and transferred to the real world. Our method is evaluated on a tabletop localization task in which the gripper interacts with objects. We report results in simulation and on a real robot, generalizing over different sizes, shapes, and configurations of the objects.

Citations (5)

Summary

We haven't generated a summary for this paper yet.