Papers
Topics
Authors
Recent
Search
2000 character limit reached

Relation-weighted Link Prediction for Disease Gene Identification

Published 10 Nov 2020 in cs.LG and cs.AI | (2011.05138v3)

Abstract: Identification of disease genes, which are a set of genes associated with a disease, plays an important role in understanding and curing diseases. In this paper, we present a biomedical knowledge graph designed specifically for this problem, propose a novel machine learning method that identifies disease genes on such graphs by leveraging recent advances in network biology and graph representation learning, study the effects of various relation types on prediction performance, and empirically demonstrate that our algorithms outperform its closest state-of-the-art competitor in disease gene identification by 24.1%. We also show that we achieve higher precision than Open Targets, the leading initiative for target identification, with respect to predicting drug targets in clinical trials for Parkinson's disease.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.