Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study on Text-Independent Speaker Verification based on the GE2E Method (2011.04896v4)

Published 10 Nov 2020 in eess.AS, cs.AI, cs.CL, and cs.LG

Abstract: While many researchers in the speaker recognition area have started to replace the former classical state-of-the-art methods with deep learning techniques, some of the traditional i-vector-based methods are still state-of-the-art in the context of text-independent speaker verification. Google's Generalized End-to-End Loss for Speaker Verification (GE2E), a deep learning-based technique using long short-term memory units, has recently gained a lot of attention due to its speed in convergence and generalization. In this study, we aim at further studying the GE2E method and comparing different scenarios in order to investigate all of its aspects. Various experiments including the effects of a random sampling of test and enroLLMent utterances, test utterance duration, and the number of enroLLMent utterances are discussed in this article. Furthermore, we compare the GE2E method with the baseline state-of-the-art i-vector-based methods for text-independent speaker verification and show that it outperforms them by resulting in lower error rates while being end-to-end and requiring less training time for convergence.

Citations (3)

Summary

We haven't generated a summary for this paper yet.