Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interactive Oracle Proofs of Proximity to Algebraic Geometry Codes (2011.04295v4)

Published 9 Nov 2020 in cs.IT, cs.CC, cs.CR, math.AG, and math.IT

Abstract: In this work, we initiate the study of proximity testing to Algebraic Geometry (AG) codes. An AG code $C = C(\mathcal{X}, \mathcal{P}, D)$ over an algebraic curve $\mathcal{X}$ is a vector space associated to evaluations on $\mathcal{P}$ of functions in the Riemann-Roch space $L_\mathcal{X}(D)$. The problem of testing proximity to an error-correcting code $C$ consists in distinguishing between the case where an input word, given as an oracle, belongs to $C$ and the one where it is far from every codeword of $C$. AG codes are good candidates to construct short proof systems, but there exists no efficient proximity tests for them. We aim to fill this gap. We construct an Interactive Oracle Proof of Proximity (IOPP) for some families of AG codes by generalizing an IOPP for Reed-Solomon codes introduced by Ben-Sasson, Bentov, Horesh and Riabzev, known as the FRI protocol. We identify suitable requirements for designing efficient IOPP systems for AG codes. Our approach relies on a neat decomposition of the Riemann-Roch space of any invariant divisor under a group action on a curve into several explicit Riemann-Roch spaces on the quotient curve. We provide sufficient conditions on an AG code $C$ that allow to reduce a proximity testing problem for $C$ to a membership problem for a significantly smaller code $C'$. As concrete instantiations, we study AG codes on Kummer curves and curves in the Hermitian tower. The latter can be defined over polylogarithmic-size alphabet. We specialize the generic AG-IOPP construction to reach linear prover running time and logarithmic verification on Kummer curves, and quasilinear prover time with polylogarithmic verification on the Hermitian tower.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com