Asymptotic Convergence of Thompson Sampling
Abstract: Thompson sampling has been shown to be an effective policy across a variety of online learning tasks. Many works have analyzed the finite time performance of Thompson sampling, and proved that it achieves a sub-linear regret under a broad range of probabilistic settings. However its asymptotic behavior remains mostly underexplored. In this paper, we prove an asymptotic convergence result for Thompson sampling under the assumption of a sub-linear Bayesian regret, and show that the actions of a Thompson sampling agent provide a strongly consistent estimator of the optimal action. Our results rely on the martingale structure inherent in Thompson sampling.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.