Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiscale Point Cloud Geometry Compression (2011.03799v1)

Published 7 Nov 2020 in eess.IV and cs.CV

Abstract: Recent years have witnessed the growth of point cloud based applications because of its realistic and fine-grained representation of 3D objects and scenes. However, it is a challenging problem to compress sparse, unstructured, and high-precision 3D points for efficient communication. In this paper, leveraging the sparsity nature of point cloud, we propose a multiscale end-to-end learning framework which hierarchically reconstructs the 3D Point Cloud Geometry (PCG) via progressive re-sampling. The framework is developed on top of a sparse convolution based autoencoder for point cloud compression and reconstruction. For the input PCG which has only the binary occupancy attribute, our framework translates it to a downscaled point cloud at the bottleneck layer which possesses both geometry and associated feature attributes. Then, the geometric occupancy is losslessly compressed using an octree codec and the feature attributes are lossy compressed using a learned probabilistic context model.Compared to state-of-the-art Video-based Point Cloud Compression (V-PCC) and Geometry-based PCC (G-PCC) schemes standardized by the Moving Picture Experts Group (MPEG), our method achieves more than 40% and 70% BD-Rate (Bjontegaard Delta Rate) reduction, respectively. Its encoding runtime is comparable to that of G-PCC, which is only 1.5% of V-PCC.

Citations (148)

Summary

We haven't generated a summary for this paper yet.