Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear polynomial approximation schemes in Banach holomorphic function spaces (2011.03362v1)

Published 4 Nov 2020 in math.FA and math.CV

Abstract: Let $X$ be a Banach holomorphic function space on the unit disk. A linear polynomial approximation scheme for $X$ is a sequence of bounded linear operators $T_n:X\to X$ with the property that, for each $f\in X$, the functions $T_n(f)$ are polynomials converging to $f$ in the norm of the space. We completely characterize those spaces $X$ that admit a linear polynomial approximation scheme. In particular, we show that it is NOT sufficient merely that polynomials be dense in $X$.

Citations (10)

Summary

We haven't generated a summary for this paper yet.