Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PubSqueezer: A Text-Mining Web Tool to Transform Unstructured Documents into Structured Data (2011.03123v2)

Published 5 Nov 2020 in cs.IR, cs.CL, and q-bio.QM

Abstract: The amount of scientific papers published every day is daunting and constantly increasing. Keeping up with literature represents a challenge. If one wants to start exploring new topics it is hard to have a big picture without reading lots of articles. Furthermore, as one reads through literature, making mental connections is crucial to ask new questions which might lead to discoveries. In this work, I present a web tool which uses a Text Mining strategy to transform large collections of unstructured biomedical articles into structured data. Generated results give a quick overview on complex topics which can possibly suggest not explicitly reported information. In particular, I show two Data Science analyses. First, I present a literature based rare diseases network build using this tool in the hope that it will help clarify some aspects of these less popular pathologies. Secondly, I show how a literature based analysis conducted with PubSqueezer results allows to describe known facts about SARS-CoV-2. In one sentence, data generated with PubSqueezer make it easy to use scientific literate in any computational analysis such as machine learning, natural language processing etc. Availability: http://www.pubsqueezer.com

Summary

We haven't generated a summary for this paper yet.