Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Self-Distilling Graph Neural Network (2011.02255v2)

Published 4 Nov 2020 in cs.LG and stat.ML

Abstract: Recently, the teacher-student knowledge distillation framework has demonstrated its potential in training Graph Neural Networks (GNNs). However, due to the difficulty of training over-parameterized GNN models, one may not easily obtain a satisfactory teacher model for distillation. Furthermore, the inefficient training process of teacher-student knowledge distillation also impedes its applications in GNN models. In this paper, we propose the first teacher-free knowledge distillation method for GNNs, termed GNN Self-Distillation (GNN-SD), that serves as a drop-in replacement of the standard training process. The method is built upon the proposed neighborhood discrepancy rate (NDR), which quantifies the non-smoothness of the embedded graph in an efficient way. Based on this metric, we propose the adaptive discrepancy retaining (ADR) regularizer to empower the transferability of knowledge that maintains high neighborhood discrepancy across GNN layers. We also summarize a generic GNN-SD framework that could be exploited to induce other distillation strategies. Experiments further prove the effectiveness and generalization of our approach, as it brings: 1) state-of-the-art GNN distillation performance with less training cost, 2) consistent and considerable performance enhancement for various popular backbones.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yuzhao Chen (7 papers)
  2. Yatao Bian (60 papers)
  3. Xi Xiao (82 papers)
  4. Yu Rong (146 papers)
  5. Tingyang Xu (55 papers)
  6. Junzhou Huang (137 papers)
Citations (42)

Summary

We haven't generated a summary for this paper yet.