Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Chebyshev-Frobenius homomorphism for stated skein modules of 3-manifolds

Published 4 Nov 2020 in math.GT and math.QA | (2011.02130v2)

Abstract: We study the stated skein modules of marked 3-manifolds. We generalize the splitting homomorphism for stated skein algebras of surfaces to a splitting homomorphism for stated skein modules of 3-manifolds. We show that there exists a Chebyshev-Frobenius homomorphism for the stated skein modules of 3-manifolds which extends the Chebyshev homomorphism of the skein algebras of unmarked surfaces originally constructed by Bonahon and Wong. Additionally, we show that the Chebyshev-Frobenius map commutes with the splitting homomorphism. This is then used to show that in the case of the stated skein algebra of a surface, the Chebyshev-Frobenius map is the unique extension of the dual Frobenius map (in the sense of Lusztig) of $\mathcal{O}_{q2}(SL(2))$ through the triangular decomposition afforded by an ideal triangulation of the surface. In particular, this gives a skein theoretic construction of the Hopf dual of Lusztig's Frobenius homomorphism. A second conceptual framework is given, which shows that the Chebyshev-Frobenius homomorphism for the stated skein algebra of a surface is the unique restriction of the Frobenius homomorphism of quantum tori through the quantum trace map.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.