Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Feasibility Governor for Enlarging the Region of Attraction of Linear Model Predictive Controllers (2011.01924v1)

Published 3 Nov 2020 in math.OC, cs.SY, and eess.SY

Abstract: This paper proposes a method for enlarging the region of attraction of Linear Model Predictive Controllers (MPC) when tracking piecewise-constant references in the presence of pointwise-in-time constraints. It consists of an add-on unit, the Feasibility Governor (FG), that manipulates the reference command so as to ensure that the optimal control problem that underlies the MPC feedback law remains feasible. Offline polyhedral projection algorithms based on multi-objective linear programming are employed to compute the set of feasible states and reference commands. Online, the action of the FG is computed by solving a convex quadratic program. The closed-loop system is shown to satisfy constraints, be asymptotically stable, exhibit zero-offset tracking, and display finite-time convergence of the reference.

Citations (15)

Summary

We haven't generated a summary for this paper yet.