Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Mathematical Foundations of Manifold Learning (2011.01307v1)

Published 30 Oct 2020 in cs.LG and cs.AI

Abstract: Manifold learning is a popular and quickly-growing subfield of machine learning based on the assumption that one's observed data lie on a low-dimensional manifold embedded in a higher-dimensional space. This thesis presents a mathematical perspective on manifold learning, delving into the intersection of kernel learning, spectral graph theory, and differential geometry. Emphasis is placed on the remarkable interplay between graphs and manifolds, which forms the foundation for the widely-used technique of manifold regularization. This work is written to be accessible to a broad mathematical audience, including machine learning researchers and practitioners interested in understanding the theorems underlying popular manifold learning algorithms and dimensionality reduction techniques.

Citations (16)

Summary

We haven't generated a summary for this paper yet.