Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

A Continuous Variable Born Machine (2011.00904v1)

Published 2 Nov 2020 in quant-ph

Abstract: Generative Modelling has become a promising use case for near term quantum computers. In particular, due to the fundamentally probabilistic nature of quantum mechanics, quantum computers naturally model and learn probability distributions, perhaps more efficiently than can be achieved classically. The Born machine is an example of such a model, easily implemented on near term quantum computers. However, in its original form, the Born machine only naturally represents discrete distributions. Since probability distributions of a continuous nature are commonplace in the world, it is essential to have a model which can efficiently represent them. Some proposals have been made in the literature to supplement the discrete Born machine with extra features to more easily learn continuous distributions, however, all invariably increase the resources required to some extent. In this work, we present the continuous variable Born machine, built on the alternative architecture of continuous variable quantum computing, which is much more suitable for modelling such distributions in a resource-minimal way. We provide numerical results indicating the models ability to learn both quantum and classical continuous distributions, including in the presence of noise.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.