View selection in multi-view stacking: Choosing the meta-learner (2010.16271v3)
Abstract: Multi-view stacking is a framework for combining information from different views (i.e. different feature sets) describing the same set of objects. In this framework, a base-learner algorithm is trained on each view separately, and their predictions are then combined by a meta-learner algorithm. In a previous study, stacked penalized logistic regression, a special case of multi-view stacking, has been shown to be useful in identifying which views are most important for prediction. In this article we expand this research by considering seven different algorithms to use as the meta-learner, and evaluating their view selection and classification performance in simulations and two applications on real gene-expression data sets. Our results suggest that if both view selection and classification accuracy are important to the research at hand, then the nonnegative lasso, nonnegative adaptive lasso and nonnegative elastic net are suitable meta-learners. Exactly which among these three is to be preferred depends on the research context. The remaining four meta-learners, namely nonnegative ridge regression, nonnegative forward selection, stability selection and the interpolating predictor, show little advantages in order to be preferred over the other three.
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitlehmeasure: The H-Measure and Other Scalar Classification Performance Metrics hmeasure: The H-measure and other scalar classification performance metrics\BBCQ [\bibcomputersoftwaremanual]. {APACrefURL} https://CRAN.R-project.org/package=hmeasure \APACrefnoteR package version 1.0-2 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2013. \BBOQ\APACrefatitleAUC: Threshold Independent Performance Measures for Probabilistic Classifiers. AUC: Threshold independent performance measures for probabilistic classifiers.\BBCQ [\bibcomputersoftwaremanual]. {APACrefURL} https://CRAN.R-project.org/package=AUC \APACrefnoteR package version 0.3.0 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2010. \BBOQ\APACrefatitleHigh-Dimensional Cox Models: The Choice of Penalty as Part of the Model Building Process. High-dimensional Cox models: The choice of penalty as part of the model building process.\BBCQ \APACjournalVolNumPagesBiometrical Journal52150-69. {APACrefDOI} \doi10.1002/bimj.200900064 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleBenchmark for Filter Methods for Feature Selection in High-Dimensional Classification Data Benchmark for filter methods for feature selection in high-dimensional classification data.\BBCQ \APACjournalVolNumPagesComputational Statistics & Data Analysis143106839. {APACrefDOI} \doi10.1016/j.csda.2019.106839 \PrintBackRefs\CurrentBib
- \APACinsertmetastarBreiman1996{APACrefauthors}Breiman, L. \APACrefYearMonthDay1996. \BBOQ\APACrefatitleStacked Regressions Stacked regressions.\BBCQ \APACjournalVolNumPagesMachine Learning2449-64. {APACrefDOI} \doi10.1007/bf00117832 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2006. \BBOQ\APACrefatitleMolecular Classification of Crohn’s Disease and Ulcerative Colitis Patients Using Transcriptional Profiles in Peripheral Blood Mononuclear Cells Molecular classification of Crohn’s disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells.\BBCQ \APACjournalVolNumPagesThe Journal of Molecular Diagnostics8151–61. {APACrefDOI} \doi10.2353/jmoldx.2006.050079 \PrintBackRefs\CurrentBib
- \APACinsertmetastarCohen1988{APACrefauthors}Cohen, J. \APACrefYear1988. \APACrefbtitleStatistical Power Analysis for the Behavioral Sciences (2nd Ed.) Statistical power analysis for the behavioral sciences (2nd ed.). \APACaddressPublisherNew YorkAcademic Press. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleCombining Multiple Anatomical MRI Measures Improves Alzheimer’s Disease Classification Combining multiple anatomical MRI measures improves Alzheimer’s disease classification.\BBCQ \APACjournalVolNumPagesHuman Brain Mapping371920-1929. {APACrefDOI} \doi10.1002/hbm.23147 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleA Coherent Interpretation of AUC as a Measure of Aggregated Classification Performance A coherent interpretation of AUC as a measure of aggregated classification performance.\BBCQ \BIn \APACrefbtitleProceedings of the 28th International Conference on Machine Learning Proceedings of the 28th international conference on machine learning (\BPGS 657–664). \PrintBackRefs\CurrentBib
- \APACinsertmetastarFleiss1971{APACrefauthors}Fleiss, J\BPBIL. \APACrefYearMonthDay1971. \BBOQ\APACrefatitleMeasuring Nominal Scale Agreement among Many Raters Measuring nominal scale agreement among many raters.\BBCQ \APACjournalVolNumPagesPsychological Bulletin765378–382. {APACrefDOI} \doi10.1037/h0031619 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2017. \BBOQ\APACrefatitleMulti-View Ensemble Classification of Brain Connectivity Images for Neurodegeneration Type Discrimination Multi-view ensemble classification of brain connectivity images for neurodegeneration type discrimination.\BBCQ \APACjournalVolNumPagesNeuroinformatics152199–213. {APACrefDOI} \doi10.1007/s12021-017-9324-2 \PrintBackRefs\CurrentBib
- \APACrefYear2009. \APACrefbtitleThe Elements of Statistical Learning The elements of statistical learning (\PrintOrdinal2nd \BEd). \APACaddressPublisherNew York, NYSpringer-Verlag. {APACrefDOI} \doi10.1007/978-0-387-84858-7 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2010. \BBOQ\APACrefatitleRegularization Paths for Generalized Linear Models via Coordinate Descent Regularization paths for generalized linear models via coordinate descent.\BBCQ \APACjournalVolNumPagesJournal of Statistical Software3311-22. {APACrefDOI} \doi10.18637/jss.v033.i01 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleMulti-View Stacking for Activity Recognition with Sound and Accelerometer Data Multi-view stacking for activity recognition with sound and accelerometer data.\BBCQ \APACjournalVolNumPagesInformation Fusion4045–56. {APACrefDOI} \doi10.1016/j.inffus.2017.06.004 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ \APACjournalVolNumPagesJournal of Machine Learning Research3Mar1157–1182. {APACrefDOI} \doi10.1007/978-3-540-35488-8_1 \PrintBackRefs\CurrentBib
- \APACinsertmetastarHand2009{APACrefauthors}Hand, D\BPBIJ. \APACrefYearMonthDay2009. \BBOQ\APACrefatitleMeasuring Classifier Performance: A Coherent Alternative to the Area under the ROC Curve Measuring classifier performance: A coherent alternative to the area under the ROC curve.\BBCQ \APACjournalVolNumPagesMachine Learning77103–123. {APACrefDOI} \doi10.1007/s10994-009-5119-5 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleBest Subset, Forward Stepwise, or Lasso? Analysis and Recommendations Based on Extensive Comparisons Best subset, forward stepwise, or lasso? analysis and recommendations based on extensive comparisons.\BBCQ \APACjournalVolNumPagesStatistical Science354579–592. {APACrefDOI} \doi10.1214/19-sts733 \PrintBackRefs\CurrentBib
- \APACrefYear2015. \APACrefbtitleStatistical Learning With Sparsity: The Lasso and Generalizations Statistical learning with sparsity: The lasso and generalizations. \APACaddressPublisherCRC press. {APACrefDOI} \doi10.1201/b18401 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2012. \BBOQ\APACrefatitleA Unified View of Performance Metrics: Translating Threshold Choice into Expected Classification Loss A unified view of performance metrics: Translating threshold choice into expected classification loss.\BBCQ \APACjournalVolNumPagesJournal of Machine Learning Research1312813–2869. {APACrefDOI} \doi10.1145/1015330.1015395 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1970. \BBOQ\APACrefatitleRidge Regression: Biased Estimation for Nonorthogonal Problems Ridge regression: Biased estimation for nonorthogonal problems.\BBCQ \APACjournalVolNumPagesTechnometrics12155–67. {APACrefDOI} \doi10.1080/00401706.1970.10488634 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2015. \BBOQ\APACrefatitleControlling False Discoveries in High-Dimensional Situations: Boosting with Stability Selection Controlling false discoveries in high-dimensional situations: Boosting with stability selection.\BBCQ \APACjournalVolNumPagesBMC Bioinformatics16144. {APACrefDOI} \doi10.1186/s12859-015-0575-3 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2017. \BBOQ\APACrefatitlestabs: Stability Selection with Error Control stabs: Stability selection with error control\BBCQ [\bibcomputersoftwaremanual]. {APACrefURL} https://CRAN.R-project.org/package=stabs \APACrefnoteR package version 0.6-3 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1977. \BBOQ\APACrefatitleThe Measurement of Observer Agreement for Categorical Data The measurement of observer agreement for categorical data.\BBCQ \APACjournalVolNumPagesBiometrics331159–174. {APACrefDOI} \doi10.2307/2529310 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1992. \BBOQ\APACrefatitleRidge Estimators in Logistic Regression Ridge estimators in logistic regression.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society C411191–201. {APACrefDOI} \doi10.2307/2347628 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleA Case Study of Stacked Multi-View Learning in Dementia Research A case study of stacked multi-view learning in dementia research.\BBCQ \BIn \APACrefbtitle13th Conference on Artificial Intelligence in Medicine 13th conference on artificial intelligence in medicine (\BPG 60-69). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleA Review on Machine Learning Principles for Multi-View Biological Data Integration A review on machine learning principles for multi-view biological data integration.\BBCQ \APACjournalVolNumPagesBriefings in Bioinformatics192325–340. {APACrefDOI} \doi10.1093/bib/bbw113 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2004. \BBOQ\APACrefatitleA Two-Gene Expression Ratio Predicts Clinical Outcome in Breast Cancer Patients Treated with Tamoxifen A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen.\BBCQ \APACjournalVolNumPagesCancer Cell56607–616. {APACrefDOI} \doi10.1016/j.ccr.2004.05.015 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1998. \BBOQ\APACrefatitleMersenne Twister: a 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator.\BBCQ \APACjournalVolNumPagesACM Transactions on Modeling and Computer Simulation813–30. {APACrefDOI} \doi10.1145/272991.272995 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2006. \BBOQ\APACrefatitleHigh-Dimensional Graphs and Variable Selection with the Lasso. High-dimensional graphs and variable selection with the lasso.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics3431436-1462. {APACrefDOI} \doi10.1214/009053606000000281 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2010. \BBOQ\APACrefatitleStability Selection Stability selection.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society B724417–473. {APACrefDOI} \doi10.1111/j.1467-9868.2010.00740.x \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleOn the Stability of Feature Selection Algorithms On the stability of feature selection algorithms.\BBCQ \APACjournalVolNumPagesJournal of Machine Learning Research181741–54. {APACrefDOI} \doi10.1007/978-3-030-46150-8_20 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2015. \BBOQ\APACrefatitleSparse Overlapping Group Lasso for Integrative Multi-Omics Analysis Sparse overlapping group lasso for integrative multi-omics analysis.\BBCQ \APACjournalVolNumPagesJournal of Computational Biology22273–84. {APACrefDOI} \doi10.1089/cmb.2014.0197 \PrintBackRefs\CurrentBib
- \APACinsertmetastarR{APACrefauthors}R Core Team. \APACrefYearMonthDay2017. \BBOQ\APACrefatitleR: A Language and Environment for Statistical Computing R: A language and environment for statistical computing\BBCQ [\bibcomputersoftwaremanual]. \APACaddressPublisherVienna, Austria. {APACrefURL} https://www.R-project.org/ \PrintBackRefs\CurrentBib
- \APACrefYear2013. \APACrefbtitleSocial Science Research Design and Statistics: A Practitioner’s Guide to Research Methods and IBM SPSS Social science research design and statistics: A practitioner’s guide to research methods and IBM SPSS. \APACaddressPublisherWatertree Press LLC. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2013. \BBOQ\APACrefatitleVariable Selection with Error Control: Another Look at Stability Selection Variable selection with error control: Another look at stability selection.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society: Series B (Statistical Methodology)75155–80. {APACrefDOI} \doi10.1111/j.1467-9868.2011.01034.x \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2013. \BBOQ\APACrefatitleA Sparse-Group Lasso A sparse-group lasso.\BBCQ \APACjournalVolNumPagesJournal of Computational and Graphical Statistics222231-245. {APACrefDOI} \doi10.1080/10618600.2012.681250 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2005. \BBOQ\APACrefatitleGene Set Enrichment Analysis: a Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.\BBCQ \APACjournalVolNumPagesProceedings of the National Academy of Sciences of the United States of America1024315545–15550. {APACrefDOI} \doi10.1073/pnas.0506580102 \PrintBackRefs\CurrentBib
- \APACrefYear2019. \APACrefbtitleMultiview Machine Learning Multiview machine learning. \APACaddressPublisherSpringer-Verlag. {APACrefDOI} \doi10.1007/978-981-13-3029-2 \PrintBackRefs\CurrentBib
- \APACinsertmetastarlasso{APACrefauthors}Tibshirani, R. \APACrefYearMonthDay1996. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society B581267-288. {APACrefDOI} \doi10.1111/j.2517-6161.1996.tb02080.x \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1999. \BBOQ\APACrefatitleIssues in Stacked Generalization Issues in stacked generalization.\BBCQ \APACjournalVolNumPagesJournal of Artificial Intelligence Research10271-289. {APACrefDOI} \doi10.1613/jair.594 \PrintBackRefs\CurrentBib
- \APACinsertmetastarmvs{APACrefauthors}Van Loon, W. \APACrefYearMonthDay2022. \BBOQ\APACrefatitlemvs: Methods for High-Dimensional Multi-View Learning mvs: Methods for high-dimensional multi-view learning\BBCQ [\bibcomputersoftwaremanual]. {APACrefURL} https://CRAN.R-project.org/package=mvs \APACrefnoteR package version 1.0.2 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleStacked Penalized Logistic Regression for Selecting Views in Multi-View Learning Stacked penalized logistic regression for selecting views in multi-view learning.\BBCQ \APACjournalVolNumPagesInformation Fusion61113–123. {APACrefDOI} \doi10.1016/j.inffus.2020.03.007 \PrintBackRefs\CurrentBib
- \APACrefYear2002. \APACrefbtitleModern Applied Statistics with S Modern applied statistics with S (\PrintOrdinal4th \BEd). \APACaddressPublisherNew YorkSpringer-Verlag. \APACrefnoteISBN 0-387-95457-0 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Methods: Case of Filter and Wrapper Approaches for Maximising Classification Accuracy Feature selection methods: Case of filter and wrapper approaches for maximising classification accuracy.\BBCQ \APACjournalVolNumPagesPertanika Journal of Science & Technology261. {APACrefDOI} \doi10.1109/icecct.2019.8869518 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2010. \BBOQ\APACrefatitleAnalysing Biological Pathways in Genome-Wide Association Studies Analysing biological pathways in genome-wide association studies.\BBCQ \APACjournalVolNumPagesNature Reviews Genetics1112843–854. {APACrefDOI} \doi10.1038/nrg2884 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2017. \BBOQ\APACrefatitleLsei: Solving Least Squares or Quadratic Programming Problems under Equality/Inequality Constraints Lsei: Solving least squares or quadratic programming problems under equality/inequality constraints\BBCQ [\bibcomputersoftwaremanual]. {APACrefURL} https://CRAN.R-project.org/package=lsei \APACrefnoteR package version 1.2-0 \PrintBackRefs\CurrentBib
- \APACinsertmetastarWolpert1992{APACrefauthors}Wolpert, D\BPBIH. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleStacked Generalization Stacked generalization.\BBCQ \APACjournalVolNumPagesNeural Networks5241-259. {APACrefDOI} \doi10.1016/s0893-6080(05)80023-1 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2014. \BBOQ\APACrefatitleNonnegative-Lasso and Application in Index Tracking Nonnegative-lasso and application in index tracking.\BBCQ \APACjournalVolNumPagesComputational Statistics & Data Analysis70116-126. {APACrefDOI} \doi10.1016/j.csda.2013.08.012 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2012. \BBOQ\APACrefatitleSparse Algorithms Are Not Stable: A No-Free-Lunch Theorem Sparse algorithms are not stable: A no-free-lunch theorem.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence341187–193. {APACrefDOI} \doi10.1109/tpami.2011.177 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleEfficient Methods for Overlapping Group Lasso Efficient methods for overlapping group lasso.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems24352–360. {APACrefDOI} \doi10.1109/tpami.2013.17 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2007. \BBOQ\APACrefatitleModel Selection and Estimation in Regression with Grouped Variables Model selection and estimation in regression with grouped variables.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society B68149-67. {APACrefDOI} \doi10.1111/j.1467-9868.2005.00532.x \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2017. \BBOQ\APACrefatitleMulti-View Learning Overview: Recent Progress and New Challenges Multi-view learning overview: Recent progress and new challenges.\BBCQ \APACjournalVolNumPagesInformation Fusion3843–54. {APACrefDOI} \doi10.1016/j.inffus.2017.02.007 \PrintBackRefs\CurrentBib
- \APACinsertmetastaradaptive_lasso{APACrefauthors}Zou, H. \APACrefYearMonthDay2006. \BBOQ\APACrefatitleThe Adaptive Lasso and Its Oracle Properties The adaptive lasso and its oracle properties.\BBCQ \APACjournalVolNumPagesJournal of the American Statistical Association1014761418–1429. {APACrefDOI} \doi10.1198/016214506000000735 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2005. \BBOQ\APACrefatitleRegularization and Variable Selection via the Elastic Net Regularization and variable selection via the elastic net.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society B672301-320. {APACrefDOI} \doi10.1111/j.1467-9868.2005.00503.x \PrintBackRefs\CurrentBib