Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the potential of transfer learning for metamodels of heterogeneous material deformation (2010.16260v1)

Published 28 Oct 2020 in q-bio.TO, cs.LG, and physics.data-an

Abstract: From the nano-scale to the macro-scale, biological tissue is spatially heterogeneous. Even when tissue behavior is well understood, the exact subject specific spatial distribution of material properties is often unknown. And, when developing computational models of biological tissue, it is usually prohibitively computationally expensive to simulate every plausible spatial distribution of material properties for each problem of interest. Therefore, one of the major challenges in developing accurate computational models of biological tissue is capturing the potential effects of this spatial heterogeneity. Recently, machine learning based metamodels have gained popularity as a computationally tractable way to overcome this problem because they can make predictions based on a limited number of direct simulation runs. These metamodels are promising, but they often still require a high number of direct simulations to achieve an acceptable performance. Here we show that transfer learning, a strategy where knowledge gained while solving one problem is transferred to solving a different but related problem, can help overcome this limitation. Critically, transfer learning can be used to leverage both low-fidelity simulation data and simulation data that is the outcome of solving a different but related mechanical problem. In this paper, we extend Mechanical MNIST, our open source benchmark dataset of heterogeneous material undergoing large deformation, to include a selection of low-fidelity simulation results that require 2-4 orders of magnitude less CPU time to run. Then, we show that transferring the knowledge stored in metamodels trained on these low-fidelity simulation results can vastly improve the performance of metamodels used to predict the results of high-fidelity simulations.

Citations (20)

Summary

We haven't generated a summary for this paper yet.