Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Targeting for long-term outcomes (2010.15835v2)

Published 29 Oct 2020 in cs.LG, stat.AP, and stat.ML

Abstract: Decision makers often want to target interventions so as to maximize an outcome that is observed only in the long-term. This typically requires delaying decisions until the outcome is observed or relying on simple short-term proxies for the long-term outcome. Here we build on the statistical surrogacy and policy learning literatures to impute the missing long-term outcomes and then approximate the optimal targeting policy on the imputed outcomes via a doubly-robust approach. We first show that conditions for the validity of average treatment effect estimation with imputed outcomes are also sufficient for valid policy evaluation and optimization; furthermore, these conditions can be somewhat relaxed for policy optimization. We apply our approach in two large-scale proactive churn management experiments at The Boston Globe by targeting optimal discounts to its digital subscribers with the aim of maximizing long-term revenue. Using the first experiment, we evaluate this approach empirically by comparing the policy learned using imputed outcomes with a policy learned on the ground-truth, long-term outcomes. The performance of these two policies is statistically indistinguishable, and we rule out large losses from relying on surrogates. Our approach also outperforms a policy learned on short-term proxies for the long-term outcome. In a second field experiment, we implement the optimal targeting policy with additional randomized exploration, which allows us to update the optimal policy for future subscribers. Over three years, our approach had a net-positive revenue impact in the range of $4-5 million compared to the status quo.

Citations (49)

Summary

We haven't generated a summary for this paper yet.